

EXECUTIVE SUMMARY:

THIS REPORT IS A COMPARISON OF ALTERNATE FLOOR SYSTEMS FOR GEORGE READ HALL. FOUR DIFFERENT SYSTEMS WERE DESIGNED AND COMPARED TO THE EXISTING HAMBRO FLOOR SYSTEM. THE FOUR SYSTEMS WERE A ONE-WAY SLAB, A TWO-WAY FLAT PLATE SLAB, PRECAST HOLLOW-CORE PLANKS, AND NON-COMPOSITE STEEL JOISTS.

THE ONE-WAY SLAB SYSTEM REDUCED THE FLOOR DEPTH AND IS ECONOMICAL TO CONSTRUCT BECAUSE OF THE ABILITY TO REUSE THE FORMWORK. THE CONS OF THIS SYSTEM ARE THAT IT REQUIRES A REDESIGN OF OTHER GRAVITY LOAD AND LATERAL LOAD MEMBERS AND INCREASES THE TOTAL WEIGHT OF THE BUILDING.

The two-way flat plate system is economical to construct because of the simplicity of the formwork. It also provides the shallowest floor depth. On the other hand, it greatly increases the total weight of the building, which could produce higher seismic loads and increase the footing sizes. Furthermore, it requires a minimum of 29" square columns.

A PRECAST HOLLOW-CORE PLANK SYSTEM IS SIMPLE TO CONSTRUCT AND CAN BE DONE RATHER QUICKLY. IT CAN ALSO BE ECONOMICAL BY DECREASING LABOR TIME. THIS SYSTEM ALSO RESULTS IN A SHALLOWER FLOOR, BUT ALSO BRINGS SIGNIFICANT ADDITIONAL WEIGHT TO THE BUILDING. THE SUPPORT FOR THIS SYSTEM COULD BE A VARIETY OF THINGS, INCLUDING MASONRY BEARING WALLS, STEEL BEAMS, AND POSSIBLY METAL STUD BEARING WALLS.

Non-composite joists with a 4" slab is easy to contruct and LIGHTWEIGHT. THE DOWNFALL OF THIS SYSTEM IS THAT IT REQUIRES MUCH DEEPER JOISTS THAN THE EXISTING COMPOSITE SYSTEM IN ORDER TO BE ECONOMICAL. ADDITIONALLY, THE SPACING OF THE JOISTS IS HALF AS MUCH, RESULTING IN THE NEED FOR TWICE AS MANY MEMBERS.

Therefore, AFTER ANALYZING AND COMPARING THESE ALTERNATE SYSTEMS, IT WAS DETERMINED THAT THREE OF THE FOUR SYSTEMS SHOULD BE CONSIDERED WITH FURTHER INVESTIGATION. THE NON-COMPOSITE JOIST SYSTEM DOES NOT WARRANT FURTHER INVESTIGATION BECAUSE IT HAS NO REAL ADVANTAGES OVER THE EXISTING COMPOSITE SYSTEM. THE OTHER THREE SYSTEMS WARRANT FURTHER INVESTIGATION BECAUSE THEY DO HAVE ADVANTAGES OVER THE ORIGINAL HAMBRO COMPOSITE SYSTEM AND COULD PROVIDE MORE ECONOMICAL OPTIONS.

EXISTING SYSTEM:

The existing floor system in George Read Hall is composed of a Hambro composite floor system. This system uses 14" deep steel 50 ksi steel joists working with a $2^3/_4$ " concrete slab. The joists are spaced at 4'-1'/₄" on center. The typical span for the joists is 23'-6" with an interior span of 6'-0" for the corridor. The typical bay is shown below.

THE SHADED AREA REPRESENTS THE CORRIDOR AREA WHERE THE LIVE LOAD IS INCREASED TO 100 PSF. THE SPAN ARROWS SHOW THE DIRECTION OF THE STEEL JOIST FRAMING IN THE HAMBRO FLOOR SYSTEM. THE LIVE LOAD IN THE NON-SHADED AREA IS 40 PSF AS DETERMINED BY IBC.

ALTERNATE SYSTEMS:

FOUR ALTERNATE SYSTEMS WERE ANALYZED AND COMPARED TO THE EXISTING SYSTEM TO DETERMINE IF A MORE APPROPRIATE DESIGN COULD BE INCORPORATED.

ALTERNATE SYSTEM #1: ONE-WAY CONCRETE JOIST SYSTEM

SUPERIMPOSED LOAD = 1.2(25) + 1.6(40) = 94 PSF \rightarrow LIVING SPACES SUPERIMPOSED LOAD = 1.2(25) + 1.6(100) = 190 PSF \rightarrow CORRIDOR

USING THE CRSI MANUAL FOR CONCRETE CONSTRUCTION, 6"WIDE x 8" DEEP RIBS SPACED AT 26" ON CENTER WITH A 3" CONCRETE TOPPING CAN SAFELY SPAN 24'-0" WITH A FACTORED SUPERIMPOSED LOAD OF 104 PSF WHEN REINFORCED WITH #4@8.5" TOP BARS AND 1-#4 AND 1-#5 BOTTOM BARS. THE TABLES ALSO TAKE DEFLECTION INTO ACCOUNT. THE DEFLECTION WAS LIMITED TO L/360, BUT THIS SPAN IS CONTROLLED BY FLEXURAL STRENGTH. IT CAN ALSO BE SEEN FROM THE TABLE THAT THE SAME JOIST CAN EASILY SPAN THE 6'-0" CORRIDOR UNDER THE CALCULATED LOADS.

STAM ONE-WAY MULTIP	JOIST	rs (1) NS	$\begin{array}{c c} 20^{\circ} \; {\rm Forms} + 6^{\circ} \; {\rm Rib} @ 26^{\circ} \; {\rm cc.} & @ \\ {\rm FACTORED} \; {\rm USABLE} \; {\rm SUPERIMPOSED} \; {\rm LOAD} \; ({\rm PSF}) & f_y = 60.000 \; {\rm psi} \\ \end{array}$												
11	Contract				8" Dee	p Rib +	3.0" Top S	lab = 11	1.0" Tota	Depth		-			
TOP	Size	#4	#4	#4	#5	#6	End	#4	#4	#4	#5	#6	Int		
BARS	@	12	11	8.5	10.5	12	Span	12	10.5	8	9.5	10.5	Span		
BOTTOM	#	#3	#4	#4	#5	#5	Defl.	#3	#3	#4	#4	#5	Defl.		
Steel (psf)		.61	.76	.97	1.20	1.46	(3)	.64	.79	1.04	1.33	1.70	(3)		
CLEAR S	PAN			EN	ID SPA	N				INTERI	OR SP/	NN	1		
14'-0	14'-0"		360	450* 477	462*	476* 678*	.334	275 0	418	514* 563	523* 734	534* 770*	.206		
15'-0	r	215	302	404	414*	426*	.440	228	353	465*	472*	482* 700*	.271		
16'-0	r .	178	255	344	374*	384*	.570	189	299	411	430* 541	438*	.35		
17'-0	y*	148	215	295	340*	348*	.726	158	255	353	393*	400*	.44		
18'-0	y*	122	182	253	311*	317*	.913	131	218	306	362*	367*	.56		
19'-0	r.	101	155	218	283	291*	1.133	109	187	265	334*	339*	.69		
20'-0	y•	82	131	188	247	268*	1.391	89	160	231	309*	313*	.85		
21'-0	y.	66	111	163	216	247*	1.691	73	137	201	277	291*	1.04		
22'-0	y*	52	93	140	189	229*	2.037	58	117	175	244	271*	1.25		
23'-0	y*	40	77	121	165	213*	2.433	46	99	153	216	253*	1.49		
24'-0	y=		64	104	144	190	2.885		84	133	191	236*	1.77		
25'-0)*		52	89	126	168	3.397		70	116	169	222*	2.09		
26'-0)*		41	75	110	149	3.974		58	100	150	200	2.44		
27-0)*			63 0	95	132	4.621		48	87	132	179	2.84		
(1) For ((2) First (3) Com (n/2) (4) Exclu *Control	putation for int sive of ed by sh	ction prior star of def erior sp bridgin hear ca	operties idard so lection i pans). g joists pacity.	s, see T uare joi s not re and tap	able 8-1 ist ends equired a ered en	secon above h nds. +Ci	d load is orizonal l apacity a	for spe ine (thi t elastic	cial tap ckness c deflec	ered jois $\geq \ell_n/1$ tion = (at ends. 8.5 for	end sp	Q ans,		

The corresponding girder was designed for this span, carrying half of the larger span living area as well as half of the corridor span. The design length was taken as 26'-8". Calculations show that an 11" x 20" girder with 7-#9 top bars and 5-#9 bottom bars is required to carry the applied loads. The depth was limited to 11" to match the depth of the JOISTS. This will make the construction process of this system much more efficient. Detailed calculations of the girder design are shown in APPENDIX A.

IN ADDITION TO A MORE EFFICIENT CONSTRUCTION PROCESS, THIS SYSTEM CAN BE MORE ECONOMICAL THAN OTHER CONCRETE SYSTEMS BECAUSE THE FORMWORK IS REUSABLE THROUGHOUT THE ENTIRE PROJECT. THE TOTAL DEPTH OF THE SYSTEM IS 11". THIS IS APPROXIMATELY 6" LESS THAN THE EXISTING FLOOR SYSTEM. THIS COULD PROVIDE BENEFICIAL IF THE FLOOR TO CEILING HEIGHT IS CONSTRICTED. HOWEVER, THE FLOOR TO CEILING HEIGHT IN GEORGE READ HALL IS APPROXIMATELY 8'-7". THEREFORE, THE NEED TO REDUCE THE FLOOR SYSTEM DEPTH DOES NOT SEEM TO BE VERY CRITICAL. THIS SYSTEM IS ALSO MORE ECONOMICAL BECAUSE FIRE PROOFING IS NOT NEEDED SINCE THE SLAB ACTS AS THE FIRE PROTECTION.

This system may be a more economical concrete floor system, but that does not mean that it is the most economical overall system. The labor costs of concrete are much higher than that of a steel system. Additionally, this system would require the use of interior concrete columns and girders in lieu of the existing cold formed metal studs. These new columns could be quite sizable in comparison to the existing HSS columns, possibly creating a loss of architectural space. The extra concrete will also greatly increase the total weight of the building which will cause greater seismic forces. The additional building weight could also cause an increase in the footings sizes. The typical one-way joist layout is shown below.

ALTERNATE SYSTEM #2: TWO-WAY FLAT PLATE

SUPERIMPOSED LOAD = 94 PSF

AGAIN USING THE CRSI MANUAL, WITH A DESIGN SPAN OF 27' IT CAN BE SEEN THAT A 9" THICK SLAB IS NEEDED. THE REQUIRED COLUMN STRIP REINFORCEMENT IS 14-#5 TOP BARS AT THE EXTERIOR SUPPORT, 9-#7 BOTTOMS BARS, AND 12-#8 TOP BARS AT THE INTERIOR SUPPORT. IN THE MIDDLE STRIP 11-#5 TOP BARS AND 14-#4 BOTTOM BARS ARE REQUIRED. THESE NUMBERS ASSUME A SQUARE PANEL. THE ACTUAL PANEL DIMENSIONS ARE 26'-8" x 23'-6". THE DIFFERENCE BETWEEN THE TWO SPANS IS RELATIVELY CLOSE, SO THE SAME REINFORCEMENT CAN BE USED IN BOTH DIRECTIONS WITHOUT BEING UNECONOMICAL.

FLA (WIT	FLAT PLATE SYSTEM (WITHOUT SHEARHEADS) SQUARE EDGE PANEL													S	QUAR	E INTI	ERIOF		EL	$f'_c = 4,000 \text{ psi}$ Grade 60 Bars								
SPAN	Factored	1.000		Total Panel Moments			Total Panel Moments		Total Panel Moments		Rein	forcing Ba	ars	1241	3 3	End Pane		(2)	(3)	(1)		Reinforc	ing Bars			1.000	125-18	
CC. Cols	Superim-	Min.	1) Square	-M +M -M Ext. Int. 1st. int.								Each		Each		2 章	Steel (psf		arring.		Min	Caluma Stain				Stee		
$\ell_1 = \ell_2$	Load	Col	umn			Co	lumn Stri	p Top	Middl	e Strip	Loc	ation of P	anel	Span	Load	Sq.	Colum	n Strip	Middl	e Strip	Loca	tion of Pa	anel					
(ft)	(psf)	(in.)	Yr	(ft-kip)	(ft-kip)	(ft-kip)	Ext. +	Bottom	Int.	Bottom	Int.	ECRE	EC	C	(ft)	(psf	(in.)	Тор	Bottom	Тор	Bottom		IE	IC				
9 in. =	TOTAL	THICKN	IESS OI	SLA	в	desta a						精制	0.750	o.f./s.f.	9 in. :	= ТОТА	L THICI	KNESS	OF SLA	в	的教育	0.7	/50 c.f./	's.f.				
23 23 23 23 23 23 23 23 23 23	50 100 150 200 250 300 350	16 20 24 27 31 34 40	0.767 0.748 0.677 0.709 0.641 0.626 0.610	74 89 103 117 129 140 147	148 179 207 234 257 279 293	200 240 278 315 346 376 395	12-# 4 5 14-# 4 7 16-# 4 5 12-# 5 5 13-# 5 4 14-# 5 3 22-# 4 4	9-# 5 16-# 4 9-# 6 10-# 6 11-# 6 9-# 7 8-# 8	11-# 6 13-# 6 15-# 6 13-# 7 11-# 8 12-# 8 13-# 8	8-#5 8-#5 8-#5 14-#4 10-#5 8-#6 12-#5	8-# 5 8-# 5 8-# 5 13-# 4 14-# 4 10-# 5	2.31 2.52 2.78 3.12 3.47 3.79 4.04	2.34 2.54 2.81 3.16 3.49 3.82 4.13	2.23 2.50 2.84 3.25 3.58 3.89 4.26	23 23 23 23 23 23 23 23 23	50 100 150 200 250 300 350	11 15 19 23 28 33 40	14-# 5 17-# 5 20-# 5 12-# 7 11-# 8 11-# 8 12-# 8	8-# 5 8-# 5 13-# 4 10-# 5 16-# 4 8-# 6 12-# 5	8-# 5 8-# 5 8-# 5 8-# 5 13-# 4 9-# 5	8-####################################	2.37 2.55 2.77 3.11 3.42 3.56 3.82	2.39 2.57 2.79 3.14 3.43 3.61 3.87	2.42 2.60 2.81 3.17 3.43 3.65 3.92				
24 24 24 24 24 24 24 24 24	50 100 150 200 250 300 350	18 22 26 30 34 39 45	0.736 0.724 0.713 0.652 0.611 0.610 0.609	84 101 116 131 144 154 161	168 201 232 262 288 307 322	226 271 313 352 388 414 433	13-# 4 5 15-# 4 7 12-# 5 5 13-# 5 4 22-# 4 4 23-# 4 4 16-# 5 2	10-# 5 12-# 5 10-# 6 16-# 5 17-# 5 8-# 8 8-# 8	12-# 6 11-# 7 13-# 7 12-# 8 13-# 8 13-# 8 17-# 7 14-# 8	8-# 5 8-# 5 9-# 5 16-# 4 8-# 6 12-# 5 9-# 6	8-# 5 8-# 5 13-# 4 10-# 5 10-# 5 16-# 4	2.33 2.62 2.97 3.37 3.69 4.02 4.29	2.35 2.64 3.01 3.41 3.74 4.06 4.31	2.27 2.64 3.12 3.49 3.86 4.19 4.45	24 24 24 24 24 24 24 24	50 100 150 200 250 300 350	12 17 22 26 31 39 47	16-# 5 11-# 7 12-# 7 11-# 8 12-# 8 13-# 8 13-# 8	8-# 5 8-# 5 14-# 4 16-# 4 12-# 5 19-# 4 9-# 6	8-# 5 8-# 5 8-# 5 9-# 5 10-# 5 10-# 5	8-# 5 8-# 5 8-# 5 8-# 5 8-# 5 8-# 5 13-# 4	2.38 2.70 2.90 3.27 3.61 3.86 4.01	2.39 2.70 2.92 3.30 3.65 3.86 4.05	2.41 2.69 2.95 3.34 3.70 3.86 4.09				
25 25 25 25 25 25 25 25 25	50 100 150 200 250 300 350	20 24 29 33 39 45 51	0.733 0.724 0.651 0.633 0.610 0.609 0.608	94 113 130 146 158 167 175	188 225 260 292 316 334 351	252 303 349 393 425 450 472	14-# 4 7 17-# 4 8 13-# 5 4 22-# 4 7 16-# 5 2 25-# 4 3 13-# 6 1	11-# 5 10-# 6 11-# 6 10-# 7 10-# 7 20-# 5 9-# 8	14-# 6 13-# 7 19-# 6 13-# 8 14-# 8 15-# 8 16-# 8	13-# 4 9-# 5 16-# 4 12-# 5 19-# 4 13-# 5 10-# 6	13-# 4 13-# 4 13-# 4 10-# 5 16-# 4 11-# 5 12-# 5	2.45 2.86 3.19 3.66 3.91 4.17 4.53	2.47 2.88 3.21 3.71 3.96 4.19 4.62	2.44 2.88 3.32 3.84 4.08 4.35 4.85	25 25 25 25 25 25 25 25	50 100 150 200 250 300 350	14 19 24 29 37 46 54	13-# 6 12-# 7 14-# 7 12-# 8 13-# 8 14-# 8	13-# 4 9-# 5 16-# 4 12-# 5 9-# 6 20-# 4 10-# 6	13-# 4 13-# 4 13-# 4 9-# 5 10-# 5 16-# 4 16-# 4	13-# 4 13-# 4 13-# 4 13-# 4 13-# 4 9-# 5 9-# 5	2.50 2.82 3.13 3.48 3.78 4.01 4.17	2.52 2.85 3.13 3.52 3.82 4.06 4.26	2.54 2.87 3.12 3.57 3.86 4.10 4.36				
26 26 26 26 26 26 26	50 100 150 200 250 300 350	22 27 31 37 44 51 58	0.705 0.658 0.655 0.636 0.609 0.608 0.607	105 125 145 161 172 182 189	209 251 290 322 345 364 378	281 337 390 433 464 490 509	16-# 4 6 19-# 4 6 22-# 4 7 16-# 5 5 17-# 5 4 13-# 6 1 19-# 5 1	9-# 6 11-# 6 10-# 7 14-# 6 11-# 7 9-# 8 10-# 8	15-# 6 14-# 7 13-# 8 14-# 8 15-# 8 16-# 8 17-# 8	13-# 4 10-# 5 12-# 5 9-# 6 10-# 6 22-# 4 11-# 6	13-# 4 13-# 4 10-# 5 16-# 4 12-# 5 12-# 5 9-# 6	2.53 2.98 3.51 3.82 4.17 4.46 4.75	2.56 3.00 3.54 3.87 4.23 4.49 4.82	2.53 3.02 3.57 3.98 4.39 4.67 5.05	26 26 26 26 26 26 26	50 100 150 200 250 300 350	16 21 26 33 43 52 62	20-# 5 13-# 7 12-# 8 13-# 8 14-# 8 15-# 8 15-# 8	13-# 4 10-# 5 12-# 5 13-# 5 10-# 6 22-# 4 11-# 6	13-# 4 13-# 4 9-# 5 10-# 5 16-# 4 11-# 5 12-# 5	13-# 4 13-# 4 13-# 4 13-# 4 9-# 5 10-# 5 10-# 5	2.48 2.88 3.33 3.61 3.94 4.19 4.43	2.49 2.90 3.37 3.64 3.99 4.24 4.51	2.51 2.92 3.41 3.68 4.05 4.28 4.59				
27 27 27 27 27 27 27 27 27	50 100 150 200 250 300 350	24 29 34 41 49 56 64	0.717 0.693 0.654 0.630 0.608 0.607 0.606	116 139 160 176 188 198 205	232 279 321 351 376 396 410	313 375 432 473 506 533 552	12-# 5 5 14-# 5 6 16-# 5 5 13-# 6 3 19-# 5 3 14-# 6 1 15-# 6 0	10-# 6 9-# 7 14-# 6 9-# 8 12-# 7 10-# 8 11-# 8	13-# 7 12-# 8 14-# 8 16-# 8 17-# 8 18-# 8 18-# 8	9-# 5 11-# 5 19-# 4 10-# 6 11-# 6 16-# 5 9-# 7	9-# 5 14-# 4 16-# 4 12-# 5 9-# 6 13-# 5 10-# 6	2.72 3.18 3.60 4.12 4.43 4.71 5.02	2.75 3.21 3.66 4.19 4.48 4.78 5.08	2.71 3.26 3.79 4.35 4.64 4.95 5.27	27 27 27 27 27 27 27 27 27	50 100 150 200 250 300 350	18 23 29 39 49 59 69	12-# 7 12-# 8 13-# 8 14-# 8 15-# 8 16-# 8 17-# 8	10-# 5 17-# 4 13-# 5 10-# 6 11-# 6 16-# 5 16-# 5	9-# 5 9-# 5 10-# 5 11-# 5 12-# 5 12-# 5 9-# 6	9-# 5 9-# 5 13-# 4 14-# 4 10-# 5 16-# 4 16-# 4	2.74 3.17 3.45 3.78 4.18 4.38 4.61	2.76 3.17 3.48 3.86 4.26 4.46 4.67	2.78 3.16 3.52 3.93 4.33 4.54 4.72				
28 28 28 28 28 28 28 28 28 28	50 100 150 200 250 300 350	26 31 38 46 54 62 70	0.709 0.679 0.662 0.609 0.608 0.607 0.606	129 154 175 191 203 213 221	258 308 351 381 407 426 442	347 414 472 513 547 574 595	19-# 4 10 15-# 5 6 13-# 6 4 19-# 5 3 20-# 5 3 16-# 6 2 16-# 6 0	23-# 4 10-# 7 15-# 6 10-# 8 13-# 7 11-# 8 11-# 8	14-# 7 13-# 8 15-# 8 17-# 8 18-# 8 19-# 8 20-# 8	10-# 5 12-# 5 10-# 6 11-# 6 16-# 5 12-# 6 10-# 7	14-# 4 10-# 5 12-# 5 13-# 5 10-# 6 10-# 6 11-# 6	2.78 3.33 3.92 4.35 4.62 5.00 5.22	2.79 3.36 3.92 4.38 4.68 5.07 5.30	2.77 3.47 4.06 4.56 4.93 5.33 5.60	28 28 28 28 28 28 28 28 28	50 100 150 200 250 300 350	19 26 33 45 56 67 77	14-# 7 13-# 8 15-# 8 16-# 8 17-# 8 17-# 8 18-# 8	16-# 4 19-# 4 14-# 5 23-# 4 16-# 5 12-# 6 17-# 5	14-# 4 10-# 5 11-# 5 12-# 5 13-# 5 13-# 5 20-# 4	14-# 4 14-# 4 10-# 5 10-# 5 16-# 4 11-# 5 12-# 5	2.82 3.29 3.78 4.05 4.37 4.57 4.79	2.82 3.29 3.78 4.09 4.41 4.65 4.89	2.82 3.29 3.79 4.13 4.46 4.73 4.99				
Tab N	(1) Colum	nns same	above an	nd belo	w plate.	an an		(banda	(2) Cent	er-to-cen	ter of col	umns; l ₁	= l_2,	1 March	(3)	Superim	posed fai	tored loa	ad (factor	ed dead	load has	been de	ducted).	Q-1-BI				

ONE OF THE PRIMARY ADVANTAGES OF THE TWO-WAY FLAT PLATE SYSTEM IS ITS ECONOMY. THE FORMWORK IS VERY SIMPLE, RESULTING IN LESS LABOR TIME TO FORM AND STRIP THE CONCRETE. ANOTHER ADVANTAGE OF THE FLAT PLATE SYSTEM IS THAT THE TOTAL DEPTH OF THE FLOOR IS ONLY **9**". HOWEVER, AS DISCUSSED ABOVE, THE DEPTH OF THE FLOOR IS NOT A CRITICAL ISSUE. AGAIN, FIRE PROOFING IS NOT NECESSARY FOR THIS SYSTEM BECAUSE OF THE USE OF THE **9**" THICK CONCRETE SLAB.

The MAJOR DOWNFALL OF THIS SYSTEM IN THE CONTEXT OF THIS REPORT IS THAT IT ALSO WOULD REQUIRE THE USE OF INTERIOR CONCRETE COLUMNS AND BEAMS. THIS SYSTEM REQUIRES MINIMUM **29**" SQUARE COLUMNS WHICH COULD REDUCE THE AMOUNT OF USABLE SPACE. THE USE OF A TWO-WAY FLAT PLATE WOULD ALSO INCREASE THE TOTAL WEIGHT OF THE BUILDING DUE TO A THICKER SLAB AND LARGER CONCRETE COLUMNS THAN IN THE EXISTING HAMBRO SYSTEM. THIS WILL AGAIN CAUSE AN INCREASE IN THE SEISMIC LOADS AND INTRODUCE GREATER LOADS INTO THE FOOTINGS.

ALTERNATE SYSTEM #3: PRE-STRESSED HOLLOW CORE PLANK

SUPERIMPOSED LOAD = 94 PSF

USING THE PCI DESIGN HANDBOOK'S PROVIDED LOAD TABLES FOR HOLLOW CORE PLANKS, IT WAS DETERMINED THAT 4'-O" WIDE X 8" DEEP LIGHTWEIGHT PLANKS WITH A 2" NORMAL WEIGHT CONCRETE TOPPING ARE SUFFICIENT. THE REINFORCING FOR THESE PLANKS IS $6^{-3}/_8$ " STRAIGHT PRESTRESSING STRANDS LOCATED $1^1/_2$ " UP FROM THE BOTTOM OF THE PLANKS. ADDITIONAL CALCULATIONS SHOW THAT A W16x50 IS REQUIRED TO SUPPORT THE EDGES OF THE PLANKS. THESE CALCULATIONS CAN BE SEEN IN APPENDIX B. THE TYPICAL PLANK CROSS SECTION IS SHOWN BELOW ALONG WITH THE CORRESPONDING LOAD TABLES.

Designation		Span, π														-							
Code	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
	320	277	242	211	186	163	144	127	113	100	88	78	69	60	53	45							
66-S	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2							
	0.4	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.0	-0.1	-0.3	-0.5	-0.7	-1.0		-			La constante		
		327	286	251	222	196	174	155	138	123	109	98	87	77	69	61	52	43					
76-S		0.5	0.5	0,6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.4	0.3					
		0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.4	0.3	0.2	0.1	-0.1	-0.3	-0.6	-0.9	-1.2			-	-	
			1	327	290	258	231	206	185	167	150	135	122	110	99	90	81	72	62	53	45		
58-S				0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.0	1.0	1.0	0.9	0.8	0.7		
				0.9	0.9	1.0	1.0	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0.4	0.2	0.0	-0.2	-0.5	-0)9	-1.3		
					323	304	278	250	225	204	184	167	151	138	125	114	103	93	83	73	64	56	48
68-S					1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.4	1.3	1.2
					1.2	1.3	1.3	1.4	1.4	1.4	1.4	1.3	1.3	1.2	1.1	0,9	0,8	0.6	0.3	0.0	-0.3	-0.7	-1.2
					332	313	297	279	263	238	216	197	179	163	149	136	125	113	102	91	81	72	64
78-S					1.3	1.4	1.5	1.6	1.7	1.7	1.8	1.9	2.0	2.0	2.1	2.1	2.1	2.2	2.2	2.2	2.1	2.1	2.0
					1.5	1.6	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.8	1.7	1.6	1.5	1.3	1.1	0.9	0.6	0.2	-0.1

Strength based on strain compatibility; bottom tension limited to $6\sqrt{f_c}$; see pages 2-2-2-6 for explanation.

The typical bay is shown below. The span arrows indicate the direction of the hollow-core span. The shaded area represents the area where the live load is increased to 100 psf.

LIGHTWEIGHT CONCRETE WAS USED FOR THIS DESIGN BECAUSE IT DECREASES THE TOTAL WEIGHT OF THE BUILDING. LIGHTWEIGHT 8" PLANKS ARE ACTUALLY LIGHTER THAN 6" NORMAL WEIGHT PLANKS. IN ADDITON TO LESS WEIGHT, LESS REINFORCING IS NEEDED BECAUSE OF THE ADDED DEPTH. THE TOTAL DEPTH OF THIS SYSTEM IS ONLY 10", WHICH IS THE SECOND SHALLOWEST OF ALL THE SYSTEMS INVESTIGATED IN THIS REPORT. THIS DEPTH ASSUMES THAT A BULKHEAD WOULD BE BUILT AROUND THE BEAMS. IT MAY BE POSSIBLE TO BEAR THE PANELS ON METAL STUD WALL, BUT FURTHER INVESTIGATION IS REQUIRED TO DETERMINE ITS FEASIBILITY. ANOTHER POSITIVE OF THIS SYSTEM IS THAT A VARIETY OF OPTIONS

ARE AVAILABLE FOR PLANK BEARING. A WIDE FLANGE BEAM WAS DESIGNED AS THE BEARING MEMBER IN THIS REPORT, BUT MASONRY WALLS AND METAL STUD WALLS COULD BE OTHER OPTIONS. THIS WILL ALLOW FOR THE MOST ECONOMICAL SYSTEM TO BE USED TO SUPPORT THE PLANKS. BECAUSE THE CONCRETE IS PRECAST, THE CONSTRUCTION TIME IS A LOT LESS FOR THIS SYSTEM. THIS WILL BE MORE COST EFFICIENT. FIRE PROTECTION IS ALSO ALREADY PROVIDED BY THE PLANKS.

EVEN WITH LIGHTWEIGHT CONCRETE, THIS SYSTEM IS STILL SLIGHTLY HEAVIER THAN THE EXISTING SYSTEM. THE BULKHEADS BUILT AROUND THE WIDE FLANGE SUPPORTS COULD PRESENT AN ARCHITECTURAL PROBLEM.

ALTERNATE SYSTEM #4: NON-COMPOSITE STEEL JOISTS

ASSUMING A 4"SLAB, THE DISTRIBUTED LOAD ON THE JOISTS IS:

W = 1.2(50) + 1.2(25) + 1.6(40) = 154 PSF

At 2'-0" on center, 18K3 steel joists are required. This was determined using the K-Series economy table from the Columbia Joist Company catalog. The slab reinforcement is #3@12 bottom bars.

Joist Designation	14K6	18K5	22K4	18K6	20K5	24K4	18K6	16K7	22K5	20K6	18K7	22K6	20K7	24K5	22K7	24K6
Denth (In)	14	18	99	18	20	54	10	10	22	20	10	-00	22	24	- 29	24
Approx Mit	77	77	80	8.1	8.2	8 4	2.5	9.6	22	80	9.0	0.2	0.2	0.3	0.7	07
(lbs/ll)	(art)	1.16.5	0.0		0.2	0.4	0.5	0.0	0.0	0.5	5.0	5.4	0.0	5.5	0.1	3.1
Span (ft)	-					-				-					-	-
select to V																
14	550	-			-											
-	550															
15	550							_								
	507															
16	550	-		550				550								
0.000	467			550				550								
17	550	0		550				550								
	443			526				526								
18	550	550		550			550	550	-		550				-	-
	408	550		490			550	490			550					
19	550	550		550			550	550		-	550			-	1	-
	383	523		455			523	455			523					
20	525	550	-	550	550		550	550		550	550		550		-	1
	347	490	_	426	550		490	426		550	490		550		-	-
21	475	550		548	550		550	550		550	550		550			
	299	460		405	520		460	406		520	460		520		a second	
22	432	518	550	498	550		550	550	550	550	550	550	550		550	
	259	414	548	351	490		438	385	548	490	438	548	490		548	
23	395	473	518	455	529		516	507	550	550	550	550	550	-	550	
	228	362	491	307	451		393	339	518	468	418	518	468		518	
24	362	434	475	418	485	520	473	465	536	528	526	550	550	550	550	550
0.00	199	318	431	269	396	516	345	298	483	430	382	485	448	544	495	544
25	334	400	438	384	446	479	435	428	493	486	485	537	541	540	550	550
	175	281	381	238	350	456	305	263	427	380	337	464	421	511	474	520
26	308	369	404	355	412	442	402	395	455	449	448	496	500	499	550	543
	166	249	338	211	310	405	271	233	379	337	299	411	373	453	454	493
27	285	342	374	329	382	410	372	366	422	416	415	459	463	462	512	503
	139	222	301	188	277	361	241	208	337	301	267	367	333	404	406	439
28	265	318	348	306	355	381	346	340	392	386	385	427	430	429	475	467
20	124	199	270	168	248	323	216	186	302	269	239	328	298	362	364	393
29		296	324	285	330	354	322	317	365	360	359	398	401	400	443	435
		179	242	151	223	580	194	167	272	242	215	295	268	325	327	354
30		276	302	266	308	331	301	296	341	336	335	371	374	373	413	406
		164	219	1:17	201	262	175	151	245	948	50.8	986	242	202	204	240

THIS SYSTEM CAN BE MORE ECONOMICAL THAN A COMPOSITE SYSTEM BECAUSE IT DOESN'T REQUIRE THE USE OF HAMBRO SPECIALISTS. THIS WOULD RESULT IN LESS LABOR COSTS. ANOTHER POSITIVE ASPECT OF THIS SYSTEM IS THAT COLD FORMED METAL STUDS CAN STILL BE USED. THE NON-COMPOSITE SYSTEM IS ALSO CLOSER IN WEIGHT TO THE EXISTING STRUCTURE, SO THE AFFECTS ON THE SEISMIC LOADS AND FOOTING CAPACITIES ARE NOT AS GREAT AS IN THE OTHER ALTERNATE SYSTEMS. THE EXISTING SHEAR WALL SYSTEM CAN ALSO BE USED.

The depth of this system totals 22". This is 5" deeper than the existing system. In addition to this additional depth, the joists are spaced at 2'-0" on center instead of $4'-1^1/_4$ " on center. This means that twice as many joists are required, significantly increasing the material costs as well as labor costs to install more joists. More joists also requires more fireproofing. All of the joists must have adequate fireproofing applied as required by code. The typical bay looks the same as the existing system; however, in this diagram, the span arrows represent 18K3 joists at 2'-0" on center.

SUMMARY:

System	Pros	Cons	FURTHER
			INVESTIGATION
EXISTING	-LIGHTWEIGHT	-DEEP FLOOR	
	- ECONOMICAL	DEPTH	
	-ALLOWS ROOM FOR	-HARDER TO	
	MECHANICAL EQUIP.	FIREPROOF	
ONE-WAY SLAB	- ECONOMICAL	- REQUIRES	Yes
	CONSTUCTION	REDESIGN	
	-NO ADDITIONAL	- HEAVY	
	FIREPROOFING	-NO ROOM FOR	
	REQUIRED	MECHANICAL EQUIP.	
TWO-WAY SLAB	- ECONOMICAL	-REQUIRES LARGE	Yes
	CONSTRUCTION	COLUMNS	
	- SHALLOWEST	-HEAVIEST SYSTEM	
	FLOOR DEPTH	-REQUIRES	
	-NO ADDITIONAL	REDESIGN	
	FIREPROOFING	-NO ROOM FOR	
	REQUIRED	MECHANICAL EQUIP.	
HOLLOW - CORE	- SHALLOW FLOOR	- HEAVY	Yes
PLANKS	DEPTH	-REQUIRES DEEP	
	-SIMPLE/FAST	SUPPORT BEAMS OR	
	CONSTRUCTION	REDESIGN	
	-COST EFFECTIVE	-NO ROOM FOR	
	DUE TO LESS	MECHANICAL EQUIP.	
	CONSTRUCTION TIME		
	-NO ADDITIONAL		
	FIREPROOFING		
	REQUIRED		
Non-Composite	-SIMPLE	-DEEPEST FLOOR	No
JOISTS	CONSTRUCTION	DEPTH	
	-LIGHTWEIGHT	-MORE JOISTS	
	-ALLOWS ROOM FOR	REQUIRED	
	MECHANICAL EQUIP.	-HARDER TO	
		FIREPROOF	

CONCLUSIONS:

AFTER ANALYZING FOUR ALTERNATE FLOOR SYSTEMS AND COMPARING THEM TO THE EXISTING SYSTEM, SEVERAL CONCLUSIONS CAN BE MADE. THREE OF THE FOUR SYSTEMS COULD REQUIRE A DIFFERENT STRUCTURAL SYSTEM THAN THE COLD FORMED METAL STUDS. IN ADDITION, THEY WOULD REQUIRE A DIFFERENT LATERAL LOAD RESISTING SYSTEM. THE NON-COMPOSITE STEEL JOIST SYSTEM DOES NOT REQUIRE A DIFFERENT STRUCTURAL SYSTEM THAN THE EXISTING ONE; HOWEVER, IT RESULTS IN A HEAVIER SYSTEM THAN THE ORIGINAL WITH SIGNIFICANTLY DEEPER MEMBERS. THEREFORE, I FEEL THAT NO FURTHER INVESTIGATION IS NEEDED ON THIS SYSTEM, AND IT IS NOT A VIABLE ALTERNATE OPTION BECAUSE IT HAS NO REAL ADVANTAGES OVER THE EXISTING SYSTEM. THE OTHER THREE SYSTEMS MAY REQUIRE REDESIGNS OF OTHER GRAVITY LOAD AND LATERAL LOAD RESISTING MEMBERS, BUT MAY BE BENEFICIAL DUE TO OTHER ADVANTAGES.

Appendix

APPENDIX A:

One-Way Slab Girder Design $W = 1.2(25) + 1.2(65) + 1.6(40) = 172 \text{ psf} \rightarrow 1 \text{ living spaces}$ $w = 1.2(25) + 1.2(65) + 1.6(100) = 268 \text{ psf} \rightarrow \text{ corridors}$ Self-weight = 1.2(11)(16)(150)(144) = 220.0 16/ft W = 172(05)(23.5) + 268(0.5)(6) + 220.0 = 3045.0 16/ft $M_{max} = \frac{WL^2}{11} = \frac{3.045(26.67)^2}{11} = 196.90 \text{ k.ft} \rightarrow \text{Negative}$ 111 $M_{max} = \frac{Wl^2}{16} = \frac{3.045(26.67)^2}{16} = 135.37 \text{ k-ft} \rightarrow \text{Positive}.$ Try 11" x 16" Girder : Top Reinforcement : $M_{\chi} = 196.90 - \frac{3.045}{2} \left(26.67 - \frac{8.5}{12}\right) = 157.37 \text{ k.ft}$ Mn, reg = 157.37 = 174.86 K. F+ $A_{5, reg} = \frac{174.86(12)}{60(0.3)(9.5)} = 4.57 \text{ in}^2 \rightarrow \text{Try } 5 - #9 \text{ Bars, } A_5 = 5.00 \text{ in}^2$ $\Omega_{-} = \frac{5.0(60)}{0.85(4)(10)} = 5.51 \text{ in.}$ $M_n = 5.00(60)(8.5 - \frac{5.51}{2}) = 1723.50 \text{ k·in} = 143.63 \text{ k·ft} < 174.86 \rightarrow NO GOOD$ Try 11'x 20" Girder : Try 7 - #9 Bars As = 7.00 in2 $a_{-} = \frac{7.0(60)}{0.85(4)(20)} = 6.18$ in. $M_n = 7.0(60)(8.5 - \frac{6.18}{2}) = 2272.94$ kin = 189.41 kin $\rightarrow 0K$ Bottom Reinforcement : Mainer = 135.37 = 150.41 kift As, req = $\frac{150.41(12)}{60(0.4)(8.5)} = 3.93 \text{ in}^2 \rightarrow \text{Try} 5-\#9 \text{ Bars, } A_5 = 5.00 \text{ in}^2$ $a = \frac{5(60)}{0.85(4)(20)} = 4.41$ in. $M_n = 5.0(60)(8.5 - \frac{4.41}{2}) = 1888.24 \text{ k·in} = 157.35 \text{ k·ft}$. 11" x 20" GIRDER w/ 7-49 TOP BARS \$ 5-49 BOTTOM BARS IS OK

APPENDIX B:

APPENDIX C:

Non-composite Joist Design - Assume 4" Slab $W_{slab} = \frac{4}{12}(150) = 50 \text{ psf}$ W = 1.2(50) + 1.2(25) + 1.6(40) = 154 prf@ 4'-0" Spacing SHEETS SHEETS SHEETS w = 154(4) = 616 1b/ft. -> exceeds all K-series joist safe loads 50 200 @ 2'-0" Spacing 22-141 22-142 22-148 W = 154(2) = 308 16/54. Edinpan. - Using K-series economy table, Use 18K3 Joists

APPENDIX D:

SECOND FLOOR FRAMING PLAN

THIRD THROUGH FIFTH FLOOR PLAN

BUILDING SECTION

21